

Performance and Future Development of the

|--|--|--|--|--|--|--|

Chip

Niels van Bakel, Jo van den Brand, Hans Verkooijen (NIKHEF Amsterdam) Daniel Baumeister, Werner Hofmann, Karl-Tasso Knöpfle, Sven Löchner, Michael Schmelling, Edgar Sexauer¹ (Max-Planck-Institute for Nuclear Physics Heidelberg) Martin Feuerstack-Raible², Ulrich Trunk (University of Heidelberg) Neville Harnew, Nigel Smale (University of Oxford) now at Dialog Semiconuctors GmbH, Kircheim-Nabern, Germany

² now at Fujitsu Mikroelektronik GmbH, Dreieich-Buchschlag, Germany

Performance and Future Development of the Beetle Chip Ulrich Trunk ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

What is "Beetle"?

- 128 channels analogue/binary pipelined readout chip
- additional immediate binary readout for trigger applications
- manufactured in commercial 0.25 μm CMOS technology

Where in LHCb will it be used?

- Silicon Vertex Detector (VELO)
- Pile-up Veto Counters
- Inner Tracker
- RICH (if MAPMTs are used)

Beetle 1.1:

- Architecture
- Layout
- Test Results

BeetleFE 1.1, BeetleFE 1.2:

- Schematics and Layout
- Expected Improvements

BeetleSR 1.0:

- Schematics
- planned Measurements

Outlook

Performance and Future Development of the Beetle Chip

ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

Features:

- 128 input channels
- CSA/Shaper with 25ns peaking time
- 40 MHz sampling (LHC clock)
 - 128 discriminators with switchable polarity
- analogue memory for 160 sampling steps
- buffer for 16 triggered events
- 4 μs max. latency
- 900ns/event readout speed
- internal DACs for bias settings
- test pulse injector with adjustable amplitude
- setup/slow control via I²C interface

Performance and Future Development of the Beetle Chip Ulrich Trunk ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

		Probe Pads		LVDS Comparator Output Pads	P	Probe Pads	
Analogue Input Pads	Protection Diodes Testpulse Injector	Analogue Frontend	Comparator	Analogue Pipeline	Pipeline Readout Amplifier	Multiplexer	ads Analogue Probe Pads Power Pads
				Pipeline/Readout Control Logic	Bacl Bia Gene I2 Interf	kend as erator C face	Digital I/O P
	Bia	Frontend S Generator		LVDS Comparator Output P	ads		Monitor Pads

Performance and Future Development of the Beetle Chip Ulrich Trunk ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

Analogue Readout shows the expected behaviour:

- flat baseline
- correct levels of encoded pipeline address
- expected gain
- pipeline homogenity better than 1000e⁻

Performance and Future Development of the Beetle Chip

ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

7th Workshop on Electronics for LHC Experiments

10-14 September 2001, Stockholm, Sweden

Beetle: Binary Readout

Performance and Future Development of the Beetle Chip

ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

Ulrich Trunk

Performance and Future Development of the Beetle Chip ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

 The Workshop on Electronics for LHC Experiments
 10-14 September 2001, Stockholm, Sweden

 BeetleFE 1.1 & 1.2: Schematics

Designed for 25 ns peaking time @ 40 pF:

reduced impedance of the load branch

PMOS input, PMOS feedback:

- no limitations for feedback transistor design
- low g_m/area of input transistor
 BeetleFE 1.0 and 1.2

NMOS input, NMOS feedback:

- high g_m/area of input transistor
- Iarge parasitics resulting from huge number of enclosed feedback transistors

BeetleFE 1.2

Performance and Future Development of the Beetle Chip

E)

ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

Set	input transistor	W	L	feedback	shaper feedback
2ac	NMOS rectangular	3744 um	0.42 um	PMOS	48.8 fF
2de	NMOS rectangular	3744 um	0.42 um	PMOS	20.5 fF
5a	PMOS waffle	8310 um	0.28 um	PMOS	15 fF
5b	PMOS waffle	8310 um	0.28 um	PMOS	18.75 fF
5c	PMOS waffle	8310 um	0.28 um	PMOS	37.5 fF
5d	PMOS waffle	7123 um	0.28 um	PMOS	18.75 fF
5e	PMOS waffle	7123 um	0.28 um	PMOS	37.5 fF
5f	PMOS rectangular	5852 um	0.28 um	PMOS	18.75 fF
5g	PMOS rectangular	5852 um	0.28 um	PMOS	37.5 fF
5h	PMOS waffle	5936 um	0.28 um	PMOS	18.75 fF
5i	PMOS waffle	5936 um	0.28 um	PMOS	37.5 fF
6a	NMOS rectangular	3744 um	0.42 um	NMOS	48.8 fF

 7th Workshop on Electronics for LHC Experiments
 10-14 September 2001, Stockholm, Sweden

 BeetleFE 1.1: First Results

- ➔ peaking time below 25 ns
- maximum charge rate to be tested

The Workshop on Electronics for LHC Experiments 10-14 September 2001, Stockholm, Sweden BeetleFE 1.2: First Results

- ➔ peaking time below 25 ns
- → maximum charge rate not an issue by design

Performance and Future Development of the Beetle Chip

of the Beetle Chip ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

Performance and Future Development of the Beetle Chip

ASIC-Labor Heidelberg, Physikalisches Institut der Universität Heidelberg

Ulrich Trunk

7th Workshop on Electronics for LHC Experiments

BeetleSR: Principle & Planned Tests

Principle of SEU-hardened logic on BeetleSR 1.0:

- triple redundant flipflops
- majority decoder

Measurements with BeetleSR 1.0:

- SEU rate vs. Flux from register banks
- SEU supression factor from triple redundant logic

SEU-hardened logic on future Beetle chips:

- triple-redundant registers in switching parts of the circuit (e.g. state machines)
- ECC with hamming codes for static circuits (e.g. configuration registers)

7th Workshop on Electronics for LHC Experiments **Beetle: Future Plans and Outlook**

Beetle 1.1:

- system test with detectors is under preparation
- test for 10 Mrad radiation hardness planned for October
- test beam planned for October

Beetle 1.2:

Tape-Out scheduled for April 2001

Beetle 1.2 will include:

- one of the front ends from BeetleFE 1.1 or 1.2
- SEU robust logic circuits with
 - triple-redundant flipflops in state machines etc.
 - ECC for static registers
- differential output driver with bipolar current
- minor improvements on discriminators

