
26. November 2003, CERN

Lab measurements with the Beetle 1.3

Sven Löchner

(Max-Planck-Institute for Nuclear Physics, Heidelberg)

Beetle 1.3 on a test PCB

Beetle User Meeting

in descending order of priority:

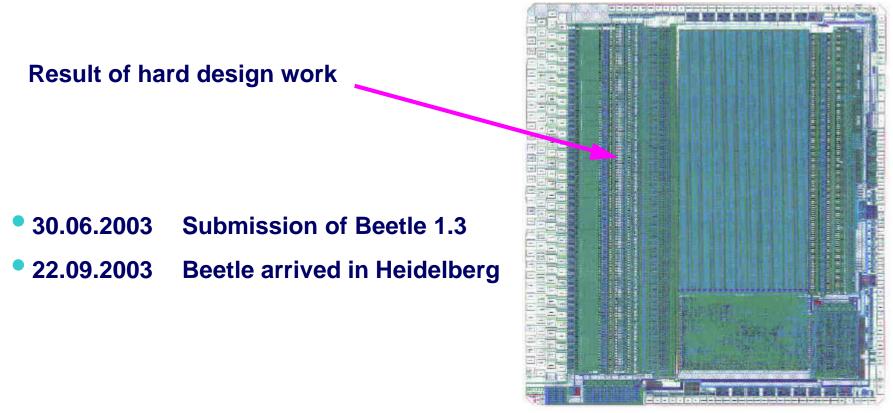
- Sticky Charge Effect
- Comparator Offset Variation
- 80 MHz Crosstalk
- Output Driver Performance
- Sagging Readout Baseline
- 5V tolerant I²C pads
-

Beetle 1.3 Lab measurements

Beetle User Meeting

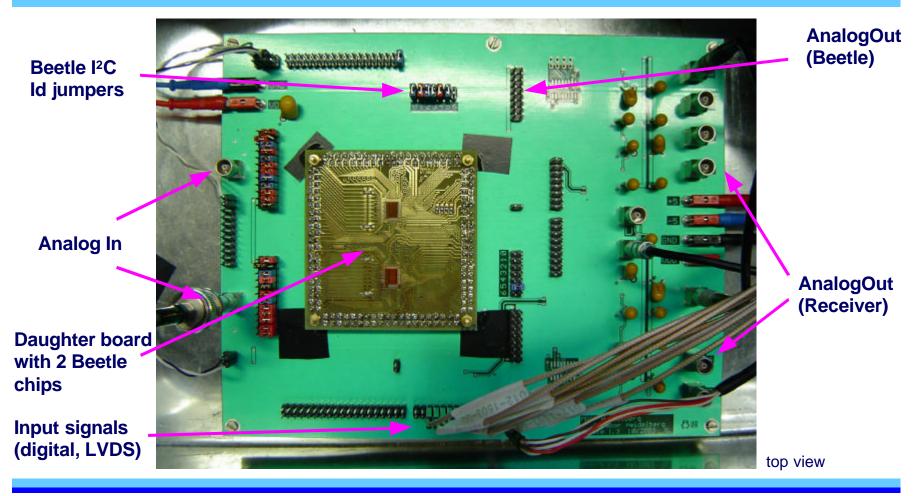
Modifications in Beetle 1.3

Design changes (on schematic level)


- analog delay of MuxTrack signal (sticky charge)
- improved comparator (5 bit threshold / channel)
- Current Output Buffer (inc. gain / diff. output)
- Multiplexer (reduction of switching spikes)
- Control Logic (bug fixes, daisy chain, low-Rclk)
- new I²C-Pads (5V compatible)
- modified Testpulse pattern ("+1/-1" pattern)
- Layout and Power Routing
 - modified front-end power pads
 - improved front-end routing / bias
 - separation of comparator core power / LVDS
 - improved pipeamp power routing
 - on-chip power blocking / additional pads

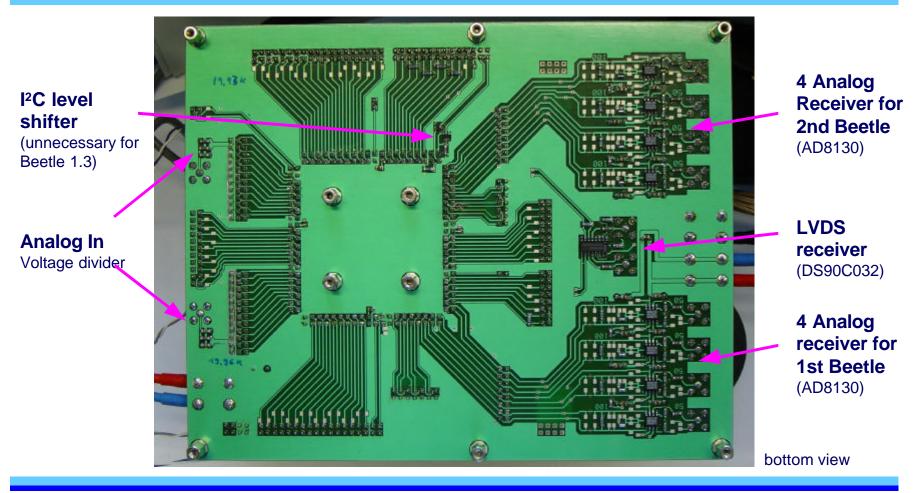
- Crosstalk measures
 - reduced no. of FF in MUX
 - reduced no. of clock buffers
 - on-chip power blocking

26. November 2003, CERN


Beetle 1.3 layout

Beetle 1.3 Lab measurements

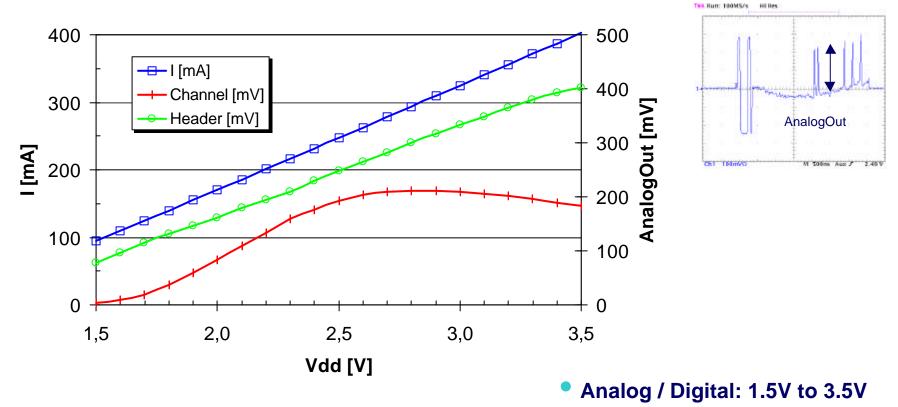
26. November 2003, CERN



Beetle 1.3 Lab measurements

26. November 2003, CERN

LHCD Beetle 1.3 Lab Setup (2)



Beetle 1.3 Lab measurements

26. November 2003, CERN

LHCb **Power Supply Operation**

Beetle 1.3 Lab measurements

26. November 2003, CERN

Power consumption [mW/ch.]	Minimal	N	lomin	al	Max	. oper	ation	Max. DAC		
#AO drivers	0	0	1	4	0	1	4	4		
without clock	0,48	3,49	3,68	4,25	4,76	5,02	5,83	14,21		
only 40 MHz clock	1,26	4,28	4,46	5,03	5,54	5,81	6,61	14,95		
clocked + 1.1 MHz trigger	1,26	4,36	4,56	5,14	5,62	5,90	6,70	15,12		

Beetle 1.3 Lab measurements

26. November 2003, CERN

LHCb Total Power Consumption (2)

I²C DAC Settings

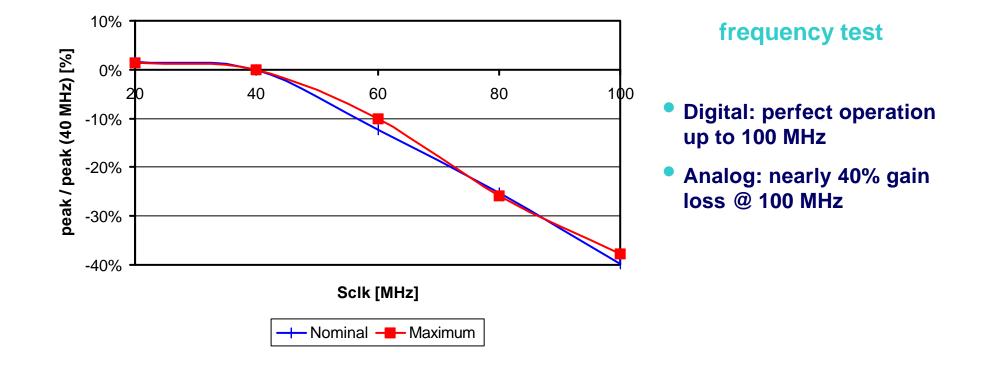
minimal

nominal

max. reasonable values

Register (minimal)					Register (nominal)						Register (max. operation)						
ltp (#0) 🔹 ×0	‡ 0 <u>u</u> ∆	Ithmain (#8) 🗍 🕇	0	цĄ	ltp (#0) 🗍 ×0	0	<u>u</u> A	Ithmain (#8) 불 × 0	\$ 0	uA	Itp (#0)	\$ 0	uА	[thmain (#8)] 🚆 ×[)		uА
Ipre (#1) 🛪	<u>#0</u>	Vrc (#9)	0	mV	[pre (#1)] ≝×4C	\$596	<u>uA</u>	<u>Vrc (</u> #9)	1	mV	Ipre (#1) [▲] ×80	1004	<u>uA</u>	<u>Vrc (#9)</u> ∎×[0 \$0		mV
Isha (#2) 🗍 ×0			0 \$0	uА	Isha (#2)	78	<u>u</u> A	lpipe (#10)	102	uA	Isha (#2) 🚽 × A	78	uA	lpipe (#10)	A [2	204	uA
Ibuf (#3) 🗍 🗮 × 0	<u>#0</u>	Va (#11) 🛔 ×		mV	Ibuf (#3)	78	<u>u</u> A	Vd (#11) 🛔 × 8E	1392	<u>mV</u>	[buf (#3)] ≝×[1A	204	uА	Vd (#11) 🚽 📲	JE 1	392	mV
<u>Vfp (#4)</u>	#0 m\	/ Vdcl (#12)	0 \$0	mV	<u>Vfp (</u> #4)	1 10	<u>mV</u>	Vdcl (#12) 불 ×63	971	<u>mV</u>	<u>∨fp (#4)</u> ≜×0	\$ 0	mV	<u>Vdcl (#12)</u>	53 🗍 🗍 🧐	171	mV
<u>∨fs (#5)</u>	m\	/ Ivoltbuf (#13) 🛱 ×	0 \$0	uА	<u>∨fs (</u> #5)	0	mV	Ivoltbuf (#13)	204	uA	<u>Vfs (#5)</u> ≜×0		mV	<u>Ivoltbuf (#13)</u>	D \$3	353	uA
Icomp (#6)	<u>∎</u> 4	lsf (#14) 불 ×	0	uА	Icomp (#6)	0	<u>u</u> A	Isf (#14)	204	uA	lcomp (#6) ≝×0		uA	lsf (#14)∫ 불×[A \$2	204	uА
Ithdelta (#7)	# 0 uA	Icurrbuf (#15) 🛱 ×		uA	Ithdelta (#7)	₿ 0	<u>uA</u>	lcumbuf (#15) 🛱 ×66		<u>u</u> A	Ithdelta (#7)	÷0	uA	Icurrbuf (#15)	9 1	200	uA
Latency (#16) 🚦	B	clkDivider (#18) 🚦	0		Latency (#16) 🚽 160		Rc	lkDivider (#18) 🚦 🛛 🛛			Latency (#16) 🚦 🕯 160		Rel	lkDivider (#18) 📲 🛛	5		
ROCtrl (#17)	<u> </u>	mpControl (#19) 🚦	0		BOCtrl (#17)	<u> </u>	Com	npControl (#19) 🗍 b100	1		ROCtrl (#17)		Com	pControl (#19)	.001]	
ROCtrl OFF	binary (2 ports)	CompControl 0	F DisableLVDS	out	ROCtrl OFF b	inary (2 port	s)	CompControl ON	DisableLVD	Sout	BOCtrl OFF bi	nary (2 ports)]		Disable	LVDS	out
OFF	analog (1 port)	0	F CompPolarity			nalog (1 por	tj	OFF	CompPolari	ty	OFF a	nalog (1 port)	l	OF	F CompP	olarity	
OFF	analog (4 ports)	ts) OFF CompOutMode			ON analog (4 ports)			OFF CompOutMode			ON a	s]	OFF CompOutMode			le	
OFF	Daisy first	0	F CompDisable			aisy first		ON	CompDisab	10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		aisy first		10		isable	
OFF	Daisy last	0	F CompMode			aisy last		OFF	CompMode			aisy last		OF	F CompM	lode	
OFF	Binary signals	1. The second	_			linary signals	s					inary signals			-		
OFF	not used				OFF n	iot used					OFF n	ot used					
OFF	ProbeEnable				OFF P	ProbeEnable					OFF P	robeEnable					
, <u> </u>																	

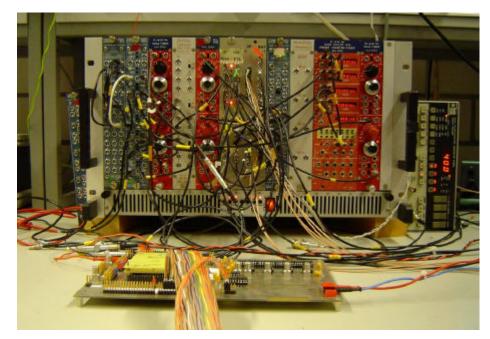
Beetle 1.3 Lab measurements


Start-up tests (~ 15 times each chip):

- 2 Beetle 1.3
- @ T= -44°C, 60°C, 75°C (facility temperature)
- Programming (I²C)
- 1.1 MHz trigger + analog readout
- Longtime operating tests (~3 days):
 - 1 Beetle 1.3
 - @ T= -44°C, 60°C, 75°C (T_{surface}= -4°C, 94°C, 107°C)
 - 1.1 MHz + analog readout
- Max. stress test:
 - 1 Beetle 1.3
 - max. DAC settings
 - @ T= 60°C (P T_{surface}= 126°C)
 - Operating over ~ 12 hour

26. November 2003, CERN

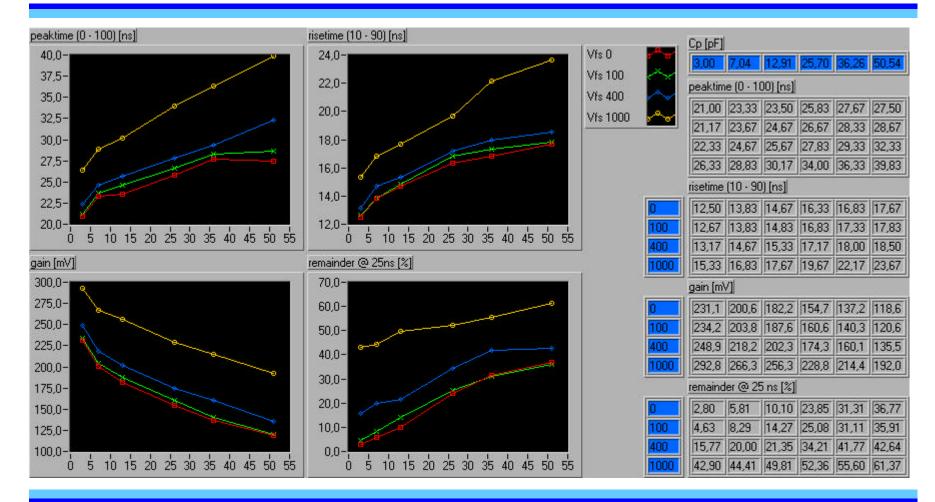
Sven Löchner ASIC-Laboratory, Max-Planck-Institute for Nuclear Physics Heidelberg



Beetle 1.3 Lab measurements

Beetle User Meeting

- 2 Beetle 1.3 @ 40 MHz
- 2 x 2.34 · 10¹² random triggers
 - 172h (1.778 ⋅ 10¹², ₽ 2.87 MHz)
 - 75h (3.039 · 10¹¹, ₽ 1.12 MHz)
 - 92h (2.550 · 10¹¹, ₽ 0.77 MHz)
- no triggers lost

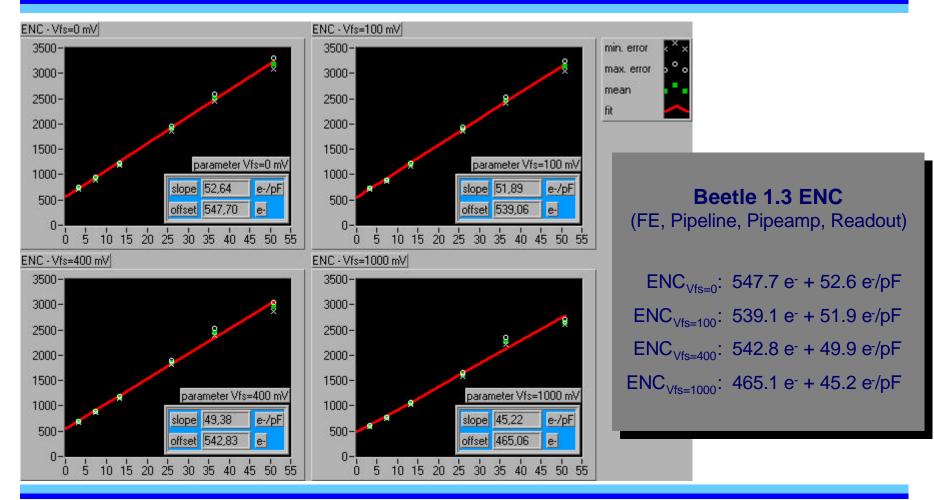

Beetle 1.3 random trigger test setup

Beetle 1.3 Lab measurements

Beetle User Meeting

LHCb Front end: Pulse-Parameter

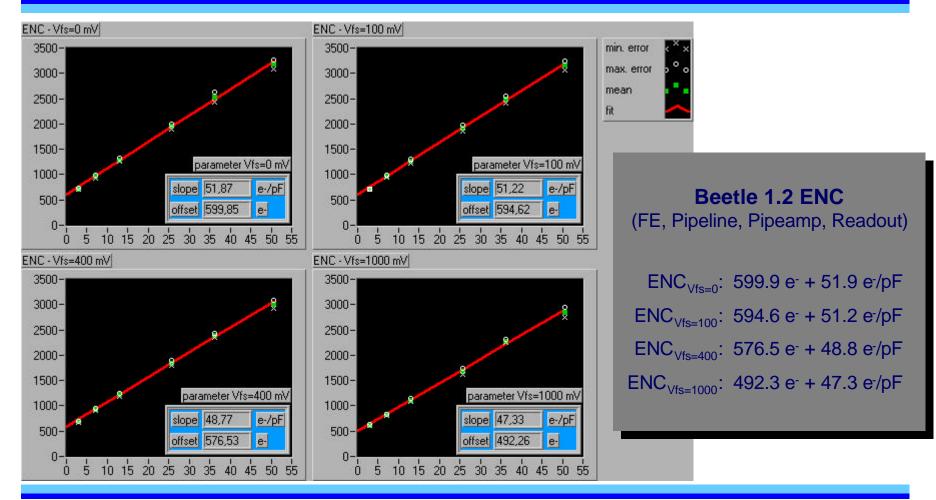
Beetle 1.3 Lab measurements


ASIC-Laboratory, Max-Planck-Institute for Nuclear Physics Heidelberg

Sven Löchner

26. November 2003, CERN

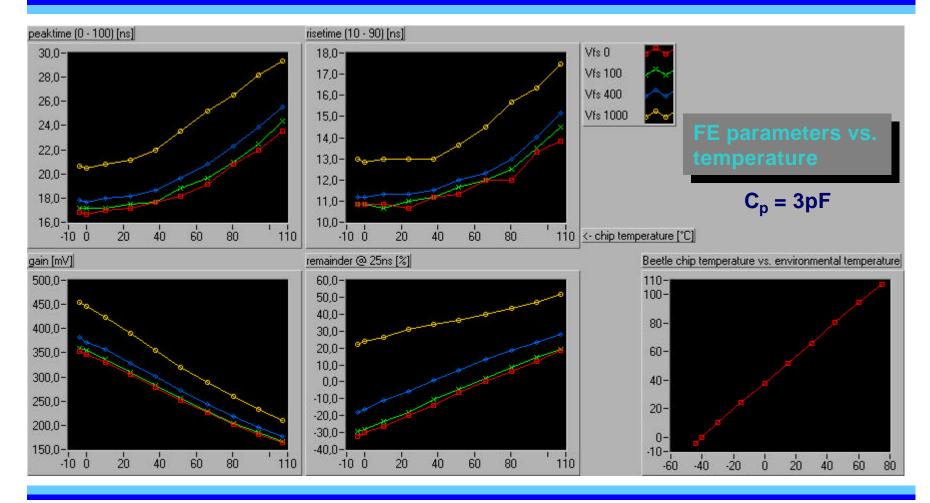
LHCb Front end: ENC - Beetle 1.3



Beetle 1.3 Lab measurements

26. November 2003, CERN

LHCb Front end: ENC - Beetle 1.2



Beetle 1.3 Lab measurements

26. November 2003, CERN

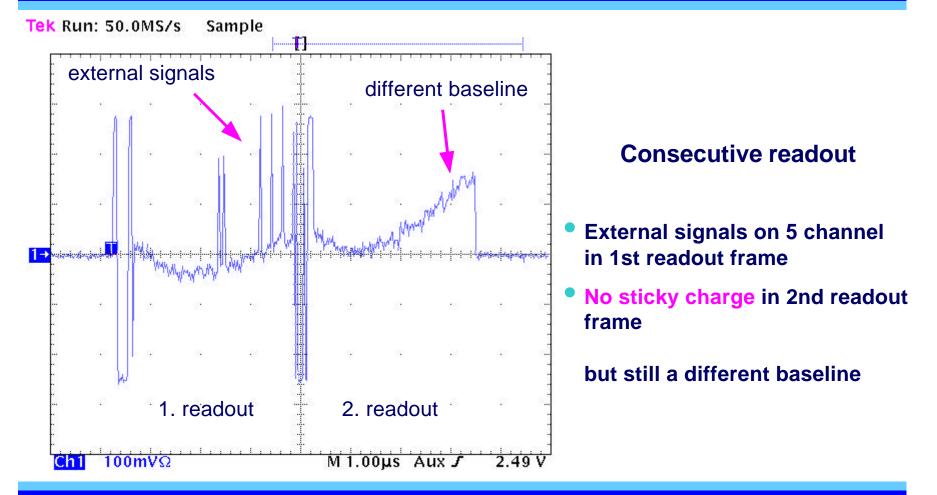
LHCb Front end: Temperature (1)

Beetle 1.3 Lab measurements

ASIC-Laboratory, Max-Planck-Institute for Nuclear Physics Heidelberg

Sven Löchner

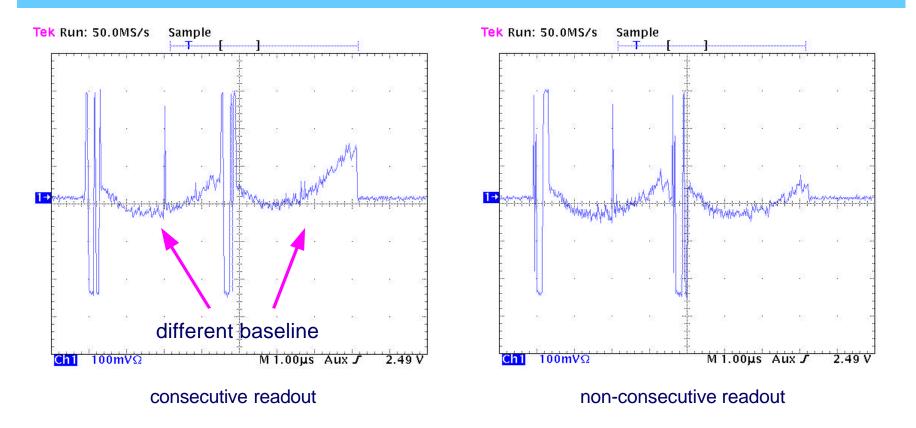
Beetle User Meeting


New 5V tolerant I²C-Pads for Beetle 1.3

 SCL / SDA input level tested: min. HIGH: 1.5V max. HIGH: 7.0V (only tested up to 7.0V)
min. LOW: -0.7V max. LOW: 1.1V @ 2.5V HIGH level 1.2V @ 3.3V 1.3V @ 5.0V

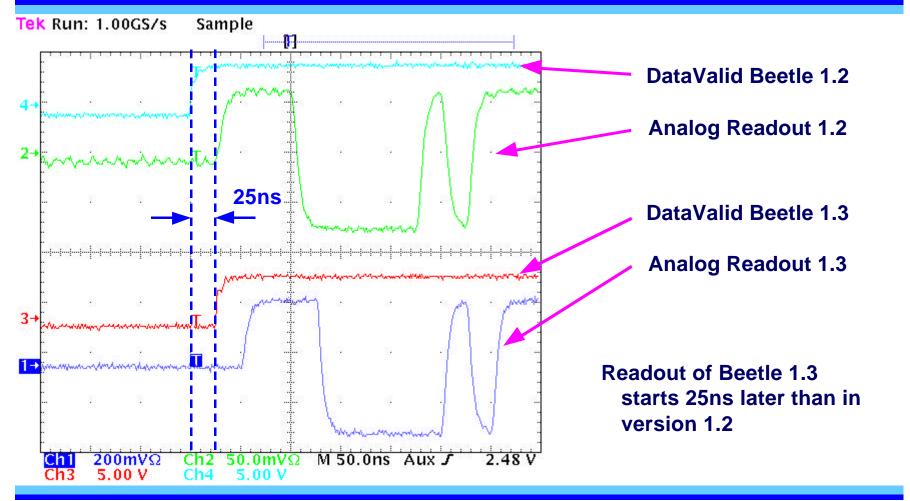
• SDA output delay (ACK): 500ns (I²C specification: delay > 300ns)

Beetle 1.3 Lab measurements



Beetle 1.3 Lab measurements

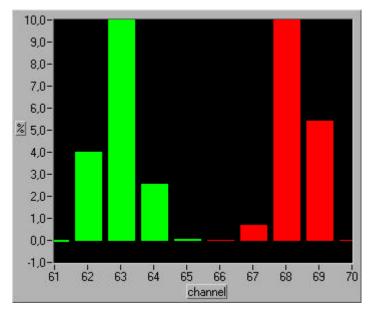
26. November 2003, CERN



Beetle 1.3 Lab measurements

Beetle User Meeting

LHCD Readout Beetle 1.2 <-> 1.3



Beetle 1.3 Lab measurements

26. November 2003, CERN

Testpulse (63. & 68) is standardised to 100%

Channel crosstalk

- measured a even/odd dependency
- up to now the reason is not understood, but this effect is also present in 1.2

Clarification of crosstalk:

- typical Testpulse for a odd channel (e.g. 63): crosstalk into predecessor channel is larger than into successor channel
- typical Testpulse for a even channel (e.g. 68): crosstalk into successor channel is larger than into predecessor channel

Beetle 1.3 Lab measurements

- Analyse recorded noise data vs. temperature
- Analyse the Pipeline homogeneity of Beetle 1.3
- Closer investigation of different readout behaviour (consecutive/non-consecutive)
- Measuring of the analog output driving capability
- Completion of front end parameters:
 - response to heavy ionizing particles
 - max. charge rate @ 22ke⁻
- Investigation of even/odd crosstalk

• ..

Beetle 1.3 Lab measurements

